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This is a short course on practical ensemble prediction, its design and verification, plus
some of its applications like probability forecast and sensitivity analysis.
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Basic concepts
An  ensemble  is,  by  definition,  a  representation  of  uncertainty  in  our  knowledge  of  a
system.  By  "system"  we  mean  here  the  state  of  a  numerical  model  (e.g.  the  3D
atmosphere or ocean, or a smaller model  down to a single environmental parameter).
Because we only have incomplete and imperfect information about nature, there is always
uncertainty about our representations of it. Examples:

• the  analysis  of  the  weather  at  any given time is  imperfect  because we cannot
observe everything.

• the forecast of tomorrow's weather (rain patterns, fronts, storms, etc) is imperfect
because  it  is  made  with  incomplete  forecast  models  initialized  from  imperfect
analyses.

• using the ECMWF forecast system we can issue a temperature forecast for tonight
at the top of the Everest (say, -43C), but there is some uncertainty around it (e.g. it
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could  be  approximated  by  a  gaussian  distribution  centered  at  -43C  with  a  4C
standard deviation).

As shown by the above examples, uncertainty is a property of a forecast or analysis
system: it will be different if another forecasting model is used. It depends on some prior
knowledge (e.g. it changes as we process new observations). There is no such thing as
"the uncertainty of  a weather event",  because the weather is what it  is. The notion of
uncertainty is relative to a modelling system. Mathematically, uncertainty is represented as
a (potentially infinite) set of possible forecast values, each with its own probability.
Estimating the uncertainty on a parameter is fundamentally different from making the best
possible forecast of it. Take for instance the temperature T at one point and time:

• the best forecast of T is unique: it is the actual real-world temperature at that point,
which does not depend on the model or the time at which the forecast is made.

• the uncertainty on the forecast of T depends on the model used and time at which
we forecast t. If we have a good forecasting system, it will set a high probability on
the actual T.

Mathematically,  uncertainty  is  modelled  as  a  distribution  function,  which  can  be  a
gaussian, a range of possible values (i.e. a rectangular function), a finite set of possible
values, or other functions. 

Figure: a 1-D bell-shaped continuous distribution, and a 2-D distribution of finite values

A numerical forecast is a process in which we take an estimate of the initial model state xa
(typically, an analysis of the state of the atmosphere or ocean on a grid) and we feed it
through a numerical simulation model M to generate a forecast x f = M(xa) at some future
time. What is the uncertainty of xf ? Since it is a combination of uncertainties in xa and in
the design of M (because models are not perfect),  a theoretical way of computing the
distribution of xf is the following:

• estimate the distribution function of uncertainties on xa

• apply all possible variants of M on a possible values of xa

• the resulting set of xf's has the distribution of the uncertainty on xf
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Figure: prediction of a 1-D distribution

Mathematically, the distribution function of x f is a convolution of the distributions of xa with
the  distribution  of  M.  Unfortunately,  this  is  an  immensely  complex  and  numerically
expensive computation, except for some trivially simple problems. The standard tool for
solving it is a numerical integration, but it works very poorly when the dimension of x is
large, a problem known as the curse of dimensionality. To make a long story short, directly
computing uncertainty distributions only works in practice if x has a very small dimension
(say,  less  that  10).  For  larger-dimension  problems,  the  most  effective  approach  is  to
approximate the uncertainty distributions by sets of discrete values, a technique known as
Monte Carlo sampling, also called "ensemble techniques" in the ocean and atmosphere
communities. This is explained in the next section.

Representing distributions with ensembles

Ensembles are a special family of distributions. Textbook distributions like the gaussian
are continuous i.e. the predicted variables can take an infinite set of values. On the other
hand, ensembles are finite distributions: the prediction can take one of several  values
(usually a few dozen, each with the same probability). A mathematician would call  it  a
Dirac mixture, that is, a sum of special distributions that put weight on a few values. In
practice, we can simply represent an ensemble {x} as a set of values:
{x} = {xi}i=1..n

where
n is the ensemble size (the number of values)
xi are the members (the set of values)
if all members have the same probability, which is the most common situation, then each
member has weight 1/n. This is called an equiprobable ensemble.
The above discussion is best visualized by representing the probability distribution function
(PDF) of a real (or scalar) value (i.e. of a model state of dimension zero), which is a real
function (from R to R). The PDF of a scalar gaussian distribution has the shape of a bell:
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Figure: a gaussian PDF

whereas a rectangular distribution (also called "box car") has a rectangular shape:

  Figure: a rectangular distribution between values x1 and x2

An ensemble of size one has weight on a single value x1, which would look like a spike (it
is a Dirac distribution: strictly speaking, the spike has infinite height and an integral equal
to 1):

Figure: a Dirac distribution on point x1

A five-member ensemble would look like a kind of comb, with a spike on each value x i :
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Figure: a five-member ensemble of values

A more readable way of plotting distributions is to show their  integral,  called the CDF
(cumulative density function); a probability distribution has an integral of one, so the
CDF goes from zero (at  -infinity)  to  one (at  +infinity).  Here  are the  CDFs of  the four
distributions plotted above:

   

Figure: CDFs of the four preceding distributions

We can see that the CDF of an ensemble has a staircase shape:
• the abcissa of each jump is located at the ensemble values x i

• the CDF value is zero at the left of the smallest value, and one at the right of the
largest value

• if there are n members, the height of each jump is 1/n
Note that in the last plot above, the members do not have to be indexed by increasing
values. The CDF of an ensemble can only have upward steps, because it is the integral of
a positive function.

Non-equiprobable ensembles: in the above example, the ensemble was equiprobable. In
some (relatively uncommon) applications, it is desirable to have uneven weights, so that
defining the ensemble requires listing the weight wi attached to each member value x i:
{x} = { xi , wi }i=1..n

An ensemble is a probability distribution, so the sum of weights is always one: sum i=1..n

wi=x

5/22

x

x
3

x
2

x
5

x
1

x
4

1

0



The CDF of a non-equiprobable ensemble is a staircase, with uneven steps:

    

Figure: ensemble CDF with non-equiprobable steps

In most applications, the ensembles are designed to be equiprobable, because this (on
average) is the most numerically efficient way of approximating any uncertainty distribution
by randomly drawn members. In the following text, all ensembles considered are assumed
to be equiprobable.

Basic statistics of a scalar ensemble

In models with many parameters, visualizing all members can be tedious. It is often more
efficient to replace the distributions {x} by a few diagnostics, called summary statistics, to
summarize  the general  shape of  the PDFs.  The most  useful  statistics  are defined as
follows for an ensemble:

• the ensemble  mean  is the average of the member values: m({x})=1/n sum i=1,n xi.
Geometrically, it indicates a form of centre of the ensemble; its main drawback is its
non-robustness: it may be affected by just a few members that are very far from the
others.

• the  standard  deviation is  the  quadratic  mean  of  the  distance  between  the
members and the ensemble mean: sigma({x})=sqrt( 1/(n-1) sum i=1,n (xi-m({x})2. In the
above formula, the mean is  normalized by n-1 and not n  for a  rather technical
statistical  reason, linked to the fact that ensemble values are used twice in the
sigma formula, once to compute the mean, once to compute sigma. (If you are not
convinced, check from the above formula that for a two-member ensemble, sigma is
indeed  a  measure  of  distance  of  the  members  to  the  ensemble  mean).  The
standard deviation is  a measure of dispersion (= spread),  it  is  very non-robust,
because the quadratic mean make it very sensitive to outliers. 

• the median Q50 is a value such that half of the ensemble values are below it. It is
not necessarily unique: for instance, in an ensemble of two different values (x1,x2),
any value in [x1,x2] fulfills the condition. It is usual to take (x1+x2)/2 as the median,
but  other  conventions  may  be  used.  This  non-unicity  problem  can  occur  in
ensemble with larger sizes. The median is a more robust indicator of the ensemble
centre,  but  it  can  be  more  expensive  to  compute,  since  it  requires  sorting  the
members. 

• the quantile (or percentile) of level n%, denoted Qn, is a value of x such that n% of
the ensemble values are below it. Thus, the median Q50 is the quantile of level
50%. Quantiles have the same non-uniqueness and computational issues as the
median, and they are relatively robust, except for very small or large values of n. By
convention, quantiles Q0 and Q100 (also denoted Qmin and Qmax) are often set to
the min and max value of the ensemble. Obviously, Qmin and Qmax are extremely
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non-robust statistics,  and as explained below it  is  very wrong to think that they
represent the min and max possible values of x.

• the  ensemble  probability  of  exceeding  a  threshold  t,  denoted  P(x>t),  is  the
proportion of members with a value x<t. For instance, the ensemble probabilities of
exceeding  Qmin  and  Qmax  are,  respectively,  0%  and  100%.  The  ensemble
probability  of  exceeding  the  median  is  50%.  More  generally,  the  probability  of
exceeding quantile Qn is 100-n percent: exceedance probabilities and quantiles are
essentially the same thing, but
◦ probabilities are uniquely defined, quantiles are not
◦ quantiles are expressed in the same physical unit as x, probabilities are not.
◦ probabilities can be cheaper to compute, since one only needs to count the

members above or below t, sorting them is not necessary. 
A related, more subtle difference is that a map of probabilities only indicates how x is
positioned with respect to t; it does not matter if x takes very large or very small values
above t, so threshold probabilities are not suitable for comparing the tails of distributions
with very variable amplitudes (if signal processing terms, they compress the dynamics of
the ensemble). Probabilities can get stuck at 0% or 100% levels if the threshold is poorly
chosen.  Quantiles,  on  the  other  hand,  tend  to  'naturally'  follow  the  dynamics  of  the
ensemble distribution.
The following figure shows how probabilities and quantiles are graphically related to a
"staircase" ensemble CDF.

 

Figure: statistics on an ensemble CDF
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Do ensembles represent anything but themselves ?

A frequent argument between ensemble practitioners and theoreticians is the question of
whether the CDF of an ensemble really is the above staircase, or it is an approximation of
some more complex distribution. This will be illustrated by the following examples:

• case A: assume that we know from some theory that the uncertainty on a scalar
variable x has a gaussian distribution N(m,s), but we do not know its mean m or
standard  deviation  s.  So  we  draw a  10-member  ensemble  {x}  using  a  random
number generator that will, in the limit of an infinite-size ensemble, distribute the
members  as  a  gaussian  N(m,s).  The  ensemble  mean  m({x})  and  standard
deviations s({x})(called the sample statistics) will be some approximations of m and
s, with some sampling error. So an engineer might look at the ensemble and say,
"the ensemble indicates that x has mean m({x}) and standard deviation s({x})" and
the theoretician will (rightly) reply "you are wrong, these are only approximations to
the mean and standard deviation of x".

• case B: assume we do not know anything about the distribution of x, except that a
10-member ensemble ({x}) is the best approximation we have. So an engineer will
say "the ensemble indicates that x has mean m({x}) and standard deviation s({x})",
and  when theoretician  says "no,  these are  only  approximations",  she will  reply
"these are not approximations, but the exact mean and standard deviation of my
distribution. Prove me wrong.". Perhaps the theoretician will try to fit a gaussian or
some other smooth, textbook distribution function (gaussian, Weibull, lognormal...)
to model the ensemble CDF, and come up with big equations about the sampling
error of a 10-member ensemble drawn from it.  But it  does not matter: here, the
ensemble  CDF  is the  member  staircase.  Replacing  it  with  a  more  complex
distribution only adds noise to the CDF, unless one can prove that the actual CDF
(that would be obtained with an infinite-size ensemble) has a specific shape. The
engineer  believes  that  the  textbook  distributions  are  approximations  to  the
ensemble, the theoretician believes the opposite,  and there is no data to prove
which is right or wrong. 

 Figure: duality of continuous vs ensemble CDF

As shown by the above discussion, engineers and theoreticians disagree because they
base  their  work  on  different  hypotheses.  Textbook  probability  distributions  may  be
beautiful,  but  it  is  rarely  possible  to  prove  that  they  work  better  than  ensemble
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distributions, since they are a trade-off between CDF smoothness and faithfulness to the
actual values of ensemble members (a deeper reason is that it takes massive amounts of
data to prove that a distribution function is better than another, and it is unnecessary to
answer such a difficult question in practical problems where one only needs to predict a
few statistics, not a complete distribution function). In most real-world problems, CDFs do
not have provable shapes, so finite-size samples are the best tool we have to approximate
reality.
A few  years  ago,  theoretical  statistics  used  to  be  useful  to  avoid  doing  expensive
numerical computations, but increasing computing power now means that in most cases,
empirical statistics based on discrete samples are very hard to beat: they save manpower
by avoiding complex mathematical derivations. The main cases where theoretical statistics
still  tend  to  be  useful  is  when  sampling  errors  are  very  large,  namely,  very  small
ensembles (sizes<10) and the computation of probabilities/quantiles in the distribution tails
above Qmax (e.g. for predicting extreme events).
In summary, although it is possible to interpret ensembles as approximations of smooth
distributions,  it  is  usually  not  possible  to  prove  that  it  works  better  than  using  raw
ensemble members.
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Building random ensemble members
As suggested above, the most common way to build an ensemble of real numbers is to
model the uncertainty using a simple distribution, and to draw members using a random
number generator. 

Using random number generators

Modern computers offer 'random' functions that compute numbers uniformly distributed
between 0 and 1, so n draws from such a function u() effectively generate an n-member
ensemble  {ui}  that  approximates  a  uniform (i.e.  rectangular)  distribution  over  the  [0,1]
interval. Any other distribution F can be approximated by applying a well-chosen function g
to  a uniform distribution,  so  that  a  corresponding ensemble  is  obtained by computing
{g(ui)} (a solution is to build g as the inverse of the CDF of F, but there are many others).
Languages like python (library random) make this even easier, by supplying function that
draw  directly  from  the  most  commonly  used  distributions  (gaussian,  weibull,  beta,
gamma...).

   Figure: generating a 5-member gaussian ensemble with python3

Using quadrature points

If  the model  dimension is  small  and the desired distribution is  known, random 'Monte
Carlo' draws may not be the most efficient ensemble generation method: most ensemble
statistics like the mean, standard deviation, exceedance probabillity, etc are integrals of
the ensemble PDF, and their ensemble versions are just numerical integrations:

• the mean of a distribution f(x) is the integral of xf(x)

• its probability of exceeding threshold t is the integral of f over [t,+infinity[

• its standard deviation is a function of its variance, which is the integral of x2f(x)

• etc.
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import random
for i in range(5) : print( random.gauss(0.,1.) )
...
-0.06572257944854769
-1.1163932186582022
-0.7644811008787148
-0.6909782568792042
-0.48034101267428925



    Figure: numerical quadrature of a function, using 6 equally weighted sample points

Thus, asking for an ensemble to be "the best approximation to a PDF" is, from a practical
point of view, the same as asking for its statistics to be the best possible approximations of
the above numerical integrals, using only the function values at points x_i.  There is a vast
mathematical literature on how to compute an integral using function values at a fixed
number  of  points  xi,  called quadrature points.  The  most  important  idea  is  that  the
quadrature points should be as evenly spaced as possible, in some sense that depends
on the  properties  of  f.  If  x  is  one-dimensional  and the  ensemble  has size  n,  a  good
approach is for the xi's to sample evenly spaced probability levels:

• if n=1, x1 should be the median of f

• if n=2, (x1,x2) should be the terciles i.e. quantiles Q33 and Q67

• if n=3, (x1,x2,x3) should the the quartiles i.e. quantiles (Q25,Q50,Q75)

• etc.

This idea that ensemble members are even slices of a distribution is very important for
practical uses of ensembles, as will be discussed in another section.
If dim(x) is small but >1, there are various algorithms to sample the parameter space in a
self-avoiding  way:  the  Halton  sequence,  sigma  points  (also  known  as  the  unscented
transform), etc., each with subtle pros and cons. In high dimensions, it is hard to beat a
naive  Monte  Carlo  sampling  (i.e.  drawing  each  component  of  vector  x  in  a  random,
uncorrelated way).

Generating correlated multidimensional ensembles

Most the above discussion is relevant for model states (i.e. vectors x) that have small
dimensions (less a a few dozens). In modern geophysical fluid modelling, model states
typically represent fields on 2D or 3D grids of sizes from 103 to 109 and more. When
initializing an ensemble of such model states, a naive strategy is to draw independent
random numbers at  each gridpoint  (mathematically,  this  is  called  white  noise).  This  is
rarely acceptable, because fluids tend to have some spatial smoothness: variations of a
physical parameter at one point (temperature, current, salinity, pressure, etc) are nearly
always related to some extent with the variations at the neighbouring points. It means that
white noise is a poor statistical model, in the sense that fields generated that way have
zero probability of occurring in nature.  White noise is also  likely to generate unphysical
behaviour  when  used  to  define  initial  conditions  or  boundary  forcing  in  numerical
prediction models of the environmental fluids (see a data assimilation course for more
explanation). Ensemble predictions using this kind of input ensembles will  usually lose
spread very quickly, meaning that their predictions will be very unefficient representations
of  the  actual  forecast  uncertainty  (see  below  for  the  relation  between  spread  and
uncertainty). It is much more realistic and effective to create ensemble fields that have
spatial correlations over distances similar to the actual forecast errors (spatial correlation
and smoothness are two closely related properties).

11/22



A relatively simple and cheap way of generating a random, spatially correlated field is the
following:

• independently draw a random number at each grid point: it creates a white noise
field

• apply a spatial smoothing operator over that field. A simple operator is the Laplacian
(a  kind  of  local  average),  which  can  be  applied  several  times  to  increase  the
correlation  length.  One  can also  alternatively  apply  recursive  filters,  or  spectral
filters  (i.e.  amplitude  modulation  on  the  field's  energy  spectrum),  which  can  be
cheaper  in  some  settings.  These  operators  can  be  configured  to  produce  a
predefined  correlation  length-scale  (the  typical  distance  over  which  spatial
correlations are significant) 

• renormalize (i.e. rescale) the obtained field so that it has the required mean and
standard deviation

• These operations can be redone several  times to generate the fields of several
ensemble members.

Figure: random fields:  white noise (left) and autocorrelated (right)

This kind of algorithm is widely used in meteorology and oceanography, but it does not
offer much control over the resulting distribution at each gridpoint. It is a mathematical fact
(the 'central  limit  theorem')  that summing several  random numbers will  usually lead to
distributions that are close to gaussian, so unless special treatment is applied to these
kinds of ensembles, they will usually look rather gaussian which is ok for most geophysical
variables (e.g. temperature or wind) but not others (e.g. chemical concentrations, wind
speed,  rain  or  relative  humidity).  The  spatial  correlations  will  tend  to  be  gaussian,
homogeneous and isotropic, which may be ok in the horizontal in the free atmosphere,
ocean or in well-mixed turbulent flows, but not in boundary layers, or near coasts or fronts,
for instance.

Generating ensembles with known covariances

The  previous  section  explained  how  to  generate  large  model  states  with  a  known
correlation length-scale. If the model state dimension is not too large, and if one accepts
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that the distribution will be gaussian at each gridpoint, it is possible to completely specify
the ensemble variances and correlations between all gridpoints, as follows:

• build the required autocovariance matrix M=cov(x,x). For instance, one can specifiy
a variance field, and a spatial correlation model to compute the coefficients of M.

• draw  n  vectors  zi whose  components  have  each  some  independent  gaussian
distributions N(0,1) (i.e. mean=zero and standard deviation=1).

• compute a symmetric square root on M, i.e. a matrix N such that N NT = M

• build the ensemble {xi} as xi = N(zi)

• it has the required covariance because mean(x i xi
T) = N mean(zi zi

T) NT = N I N = M
where I is the identity matrix.

This is a powerful method for approximating large covariance matrices with ensembles,
used  in  most  Ensemble  Kalman  Filter  algorithms  for  data  assimilation  (see  the  data
assimilation course for more detail). 

13/22



Designing and running ensemble predictions
The  previous  sections  explained  how  an  ensemble  of  states  {x}  can  represent  the
uncertainty of a model state x. Now we shall see how to estimate the uncertainty of a
numerical forecast represented by a prediction operator M that maps x at present time to
another model state, y, at some future time: if x0 is our best estimate of the current model
state, then our best deterministic forecast is
y0 = M(x0)
that is, if we assume that M is our best available prediction model. Conceptually, we are
producing the output data y0 as a function of our knowledge of x0 and M, which are our
input data:
y0 = f(M,x0)
the uncertainties on the design of M and x imply forecast uncertainties on y. If we use p()
to denote the probability distribution of each, we have:
p(y) = f(p(M),p(x))
which means "randomly draw all possible values of M and x, compute M(x), the output will
be distributed like the uncertainty on y". Unfortunately this is hugely expensive to compute
if  x  and/or  M  can  take  infinitely  different  values  (mathematically,  f  represents  the
convolution of p(x) by p(M); if  x and M are Dirac distributions, then f(M,x) equals M(x)
which is the deterministic forecast above). We can approximate p(y) b an ensemble of n
members as follows:

• draw n random values of x, {xi}, to approximate p(x)

• independently draw n random values of M, {Mi}, to approximate p(M)

• then, the set of yi=f(Mi,xi)=Mi(xi) is an approximation of the forecast uncertainty y i

called an ensemble prediction.

[Figure: schematics of ensemble perturbation & output]

The exact proof of the above is a bit complex, but it boild down to saying "to estimate the
uncertainty of a forecast, perturb all uncertain input parameters of the forecast process".
The  subtelty  is  that  one  should  in  principle  take  into  account  the  uncertainties  in
everything, including the forecast model equations M, including all processes that exist in
nature but are not represented by M. Doing so is obviously hopeless since we cannot
represent the uncertainty of things we do not know about. Fortunately, in practice we "only"
need  to  represent  the  uncertainty  on  processes  to  which  the  forecast  is  significantly
sensitive. Also, as will  be shown below, we can account (to a limited extent) for  error
sources we may have forgotten by doing some machine learning.
Concrete  example: modern  global  numerical  weather  predictions  are  known  from
experience to be significantly affected by the following uncertainties:

• errors in the model initial condition (because we do not have enough observations
to perfectly known the current weather everywhere on the globe)

• errors  in  modelling  slowly  evolving  parameters  of  the  lower  boundary  of  the
atmosphere, like sea surface temperature (SST), soil moisture, etc

• errors in the model forecast equations, in particular because the model resolution is
not infinite (global models have horizontal grids >1km wheras the atmosphere has
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significant  motion like eddies down to  1mm size)  and the computation of  some
physical  processes  is  a  poor  approximation  to  their  real  behaviour  (e.g.  the
thermodynamics  of  convective  clouds,  the  rain  patterns,  the  radiative  effect  of
clouds) 

Thus, an ensemble prediction system to estimate the forecast uncertainty of the above
procedure could be:

• draw  n  independent  perturbations  to  the  best  available  analysis,  using  for  all
parameters the standard deviations and correlations that are known (from statistics
on past analyses) to to occur on average in the analyses: this yields an ensemble xi
of initial conditions. (the data assimilation course explains more effective ways of
representing  analysis  uncertainty,  using  Kalman  filters or  ensemble  data
assimilation), because the amplitude and correlations of analysis errors are not the
same everyday or everywhere, and it is possible to predict their variations)

• draw n independent perturbations to surface fields of SST, soil moisture, etc, again
using statistics gathered from historical error diagnostics

• draw  n  modifications  to  the  equations  of  the  numerical  prediction  model  M,  to
represent  known errors  linked to  the  representation  of  small  eddies,  convective
clouds, radiation, etc. the combination of these perturbations with the set of initial
conditions defines a set of n forecast model Mi

• apply these n model and surface condition variants to the n initial  conditions: it
yields an ensemble representation {yi}= { Mi(xi) } of the forecast uncertainties on y.

By  "perturbations"  we  mean  that  random  numbers  are  added  to  some  deterministic
prediction  system to  represent  an  ensemble  of  prediction  systems,  which  is  the  most
common ensemble generation technique. 
Multimodel ensembles: in some prediction systems, ensembles can be obtained directly
by gathering fields and model software from different, independent prediction system: this
is called the  multimodel technique, in which the predicted uncertainty is not linked to a
particular  model,  it  represent  the  knowledge  gathered  from  the  set  of  models  used.
(multimodel ensembles are a convincing way of representing model error, unfortunately
they represent a  lot  of  effort  to  run since one needs  either  to master  many different
prediction  software  systems,  or  to  gather  predictions  in  real  time from many different
weather  prediction  centres.  They  also  raise  statistical  difficulties  linked  to  varying
systematic errors beteen the ensemble members, which creates an ensemble dispersion
that is not truly "random").
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Tuning & measuring the quality of an ensemble prediction
The above explains the mechanics of generating an ensemble prediction. But how do we
tune  the  ensemble  perturbations  ?  How can  we  optimize  the  quality  of  an  ensemble
prediction system ? Because a probabilistic prediction produces not a value but a function
of every forecast parameter, there is an infinity of ways to define and measure the quality
of en ensemble forecast. Unlike a deterministic forecast where one can just measure a
distance between a forecast value and a truth (e.g. observed) value, the most important
concept to understand is that

** It is impossible to judge the value of an ensemble forecast on a single case **
(sadly, this is still not understood by many ensemble users, even after over 30 years of
operational  ensemble  prediction  in  meteorology).  Because  probability  distributions  can
only be accessed through statistics like spread, probabilities, quantiles, etc, ensembles
can only be evaluated on average, on samples large enough to compute these statistics at
the precision needed to reach practical conclusions. Conclusions made on isolated cases
are usually misleading.
The  most  robust  statistics  (i.e.  the  easiest  to  compute  with  a  small  sample)  are  the
ensemble mean and the spread. 

Step one: validating the ensemble mean

There  are  three  kinds  of  important  mean-type  statistics  to  check  with  respect  to
observations:

• the  ensemble  mean  minus  the  observation  mean is  equal  to  the  mean  of
(member - obs) values i.e. it is the ensemble bias. It can be used to study if an
ensemble prediction system has biases: because numerical models are non-linear,
even symmetric perturbations distributions can create forecast biases, which may
or may not have predictive value. If the ensemble members are  interchangeable
(i.e. they are all drawn from the same, uncorrelated distributions of perturbations),
the ensemble mean is not very interesting because it contains the same information
as can be obtained from a single member i.e. a deterministic forecast. Actually, a
"deterministic"  numerical  prediction  started  from  an  unperturbed  variational  or
Kalman filter analysis is an ensemble mean in the sense that it started from the
mean  of  the  analysis  uncertinty  distribution  (see  the  data  assimilation  course).
Multiphysics or multimodel ensemble members are usually NOT interchangeable,
so there is a complex relationship between the members biases and the ensemble
spread.

• the  distance  between  the  ensemble  mean  and  the  observations (e.g.  their
absolute  difference  or  the  quadratic  distance)  measures  how  far  the  ensemble
centre is from the truth. It is popular with some ensemble developers because it is
often smaller than the score of the corresponding deterministic forecast (obtained
by setting all ensemble perturbations to zero), so they can tell their managers "look,
my ensemble predictions are better than the deterministic system". Taking the mean
produces this apparent improvement when it hides some atmospheric (or oceanic)
variability, by averaging out the differences between members and only retaining
the common flow features. The result is that the ensemble is generally a useless
forecast because it lacks many features present in the members (mathematically,

16/22



the reduction in the quadratic distance is linked to the "parallel axis theorem"). In
conclusion, this should never be used as an ensemble score, except as part of the
spread-skill diagnostic explained in the next section.

• the mean of the distance between the members and the observations (notice
how it differs from the previous measures) measures how far each member is from
the  truth.  It  is  usually  larger  than  the  equivalent  score  of  the  corresponding
deterministic  forecast,  because  members  are,  to  first  order,  equal  to  the
deterministic forecast plus some random uncorrelated noise. It is usually necessary
to degrade this "distance" (with respect to the deterministic forecast) in order to
create a realistic ensemble spread (due to forecast nonlinearities, sometimes this
distance is insensitive or even decreases with ensemble spread, for instance with
some  stochastic  physics  schemes).  Thus,  it  is  NOT a  standalone  measure  of
ensemble quality. It is a common mistake in ensemble verification to conclude that
an ensemble is "worse" than another model because its members are further away
from the truth according to this kind of diagnostic.  It  is  interesting, however,  for
checking the impact of nonlinearities in an ensemble prediction, by investigating the
question  "does adding random noise  to  the  output  of  a  deterministic  prediction
produce better or worse forecasts than perturbing the inputs of the corresponding
ensemble prediction ?"

[Figure: score rms & bias]

Step two: validating the ensemble spread

The spread (or 'dispersion') measures a distance between the ensemble members and an
ensemble  centre.  The  most  common  measure  of  spread  is  the  standard  deviation.
Achieving an ideal  value of an ensemble spread is a major goal  of  ensemble design,
because it is closely related to the design of ensemble perturbations:

• an "ensemble" with no input perturbations will have zero spread.

• ensemble  spread  usually  increases  (more  or  less  linearly)  with  the  standard
deviations of input perturbations.

• ensemble spread is a direct measure of forecast uncertainty.

Standard deviation is a poor indicator of uncertainty for variables with very non-gaussian
distributions like precipitation, cloudiness or concentration, but it is a useful indicator of the
correctness  of  ensemble  spread  when  verifying  with  quasi-gaussian  variables  like
temperature  and  wind  or  current  components  (but  not  speed).  More  precisely,  an
ensemble with insufficient spread:

• has members and quantiles that are, on average, too close to the ensemble centre
and  to  the  corresponding  deterministic  forecast  (i.e.  it  lacks  variability  in  the
predicted scenarios)

• has  differences  between  members  that  are,  on  average,  smaller  than  the
differences between the  members and reality  (we say that  "reality  escapes the
ensemble")
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• scalar forecast parameters are too often observed to be below the ensemble min or
above the ensemble max (although it may happen for a perfectly spread ensemble,
it should not happen too often: see the section on reliability below)

• its  probabilities  are,  on  average,  too  close to  zero  or  to  one (we say that  "the
ensemble is overconfident")

• in  summary,  an  insufficiently  spread  ensemble  underestimates  the  forecast
uncertainty

The  correctness  of  spread  is  a  particular  measure  of  ensemble  reliability  (see  next
section), it is particularly important when using ensembles to estimate forecast errors,but
as can be seen from the above list, lack of spread pollutes most aspects of ensemble
output. Achieving enough spread is a major concern in most ensemble prediction systems,
which tend to be underdispersive, so that many ensemble developers are looking for ways
to increase their spread. One needs to be careful not to exaggerate ensemble spread,
because many ensemble scores can hide the following issues:

• in a single ensemble, some output parameters can be overspread, while others are
underspread.

• averaging spread over a large data samples can hide compensation between flow
regimes that are underspread, and others that are overspread.

The two most  commonly used measures of  spread correctness are the  rank diagram
(described in the next section) and the spread-skill ratio, which is computed as follows: for
a scalar forecast parameter ensemble {xi} and its observation xo, with an observation error
standard deviation so:

• let s(xi) be the forecast standard deviation at one particular point

• let m(xi) be the ensemble mean

• then spsk(xi,o) = ( s(xi)2 + so
2 ) / sqrt( (m(xi)-xo)2 ) is called the spread-skill ratio

It  can be  demonstrated  that  an  ensemble  with  a  perfect  forecast  distribution  has,  on
average, spsk(xi,o)=1. If it is <1, then the ensemble is underspread. 

[Figure: underspread vs overspread ensemble]

Note that the first term of the denominator of spsk() is the quadratic distance between the
ensemble  mean and the  observation.  Also  note  that  observation  errors  act  as  if  they
increase the ensemble spread, wheras intuition might have suggested it is the other way
around. The condition spsk()=1 can be rephrased in English as follows:

From the point of view of quadratic distance, (member,member) couples should be
undistinguishable from (member,obs) couples.

This is a particular case of reliability, as explained in the next section.

A common problem with spread tuning is when we only observe a small fraction of model
variables. Inflating the spread for those variables that are observed does not guarantee
that  spread  in  the  tuned  ensemble  will  be  correct  for  all  variables.  Many  ensemble
perturbation techniques generate substantial correlations between variables, because they
rely on some aspects of model design. It can even lead to some perturbations schemes
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creating random large-scale biases (e.g. tuning parameters in physical parametrizations,
or  multiphysics),  which  means  that  although  the  spread  measured  and  tuned  at
observation points (assumed to be uncorrelated between points in space and time) may
be correct, there may be a large overperturbation of large-scale/low-frequency structures.
This problem is colloquially known as "when there is a hammer in your hand, everything
looks like nails".

 [Figure: overspread ensemble by partial tuning]

Step three: validating the ensemble reliability

The above criteria measured some form of consistency between the ensemble mean and
spread,  and  the  observation.  A  more  general  form  of  consistency,  called  reliability,
generalizes these measures as follows:
The  distributions  of  observations  and  ensemble  members  should  be
undistinguishable from each other.
Note  that  reliability  is  a  necessary  condition  for  an  ensemble  to  prodict  the  correct
uncertainty distributions. It is not sufficient.
Apart  from  the  ensemble  mean  and  spread,  the  most  frequently  used  measures  of
reliability are, for scalar variables:

• the reliability diagram, which checks if probabilities of exceeding one threshold are
consistent with the observations.

• the  rank  diagram,  which  checks  if  the  relative  ordering  of  members  and
observations can be distinguished from each other.

Calibration is a set of post-processing techniques by which some aspects fo the reliability
of an ensemble are improved using machine learning.
[Figure: reliability diagram]

The rank diagram is the visualization of a fundamental property of the ensemble prediction
of a scalar variable:
when sorted in ascending order, the values of an n-member ensemble define n+1 classes
of equally likely values. The probability of the truth being between Qmin and Qmax is (n-1)/
(n+1).
A sadly often forgotten consequence is that there is 2/(n+1) probability that truth "escapes
the ensemble" i.e. is under Qmin or above Qmax. For a 12-member ensemble, this occurs
2/13= 15% of the time ~ every 7 cases. Some weather forecasters fool themselves into
thinking  the  ranges  of  values  predicted  by  ensembles  are  bounds  what  can  possibly
happen,  sometimes  with  disastrous  consequences.  Interpreting  ensembles  that  way
requires computing them with enough members ( n at least 30 to 50) so that the ratio
2/(n+1)  becomes  negligible  (less  than  the  tolerated  non-detection  rate),  which  is  a
computational  investment that  few forecasting centres have done so far.  This  problem
explains  most  current  failures  to  successfully  apply  ensembles  as  tools  for  human
forecasting.  

[Figure: rank diagram]
<to be written>

19/22



The concepts of reliability and resolution

Reliability is a "climatological" measure of the correctness of an ensemble, by checking
that average predicted distributions are consistent with various aspects of the observed
distributions.  Reliability  is  a  necessary,  but  not  sufficient  condition for  an ensemble to
correctly  predict  the  forecast  uncertainty.  An  ensemble  can  have  perfect  reliability
according  to  many  measures,  by  producing  a  perfect  climate,  but  no  usefulness,  by
randomly issuing climatologically distributed values. 
A dual aspect of ensemble performance is the resolution, i.e. the ability of an ensemble to
predict probabilities that are substantially different from climate (do not confuse ensemble
resolution, which is a statistical property, with model numerical resolution which is related
to grid discretization). Resolution is not a matter of consistency between ensemble and
observation, it just measures whether probabilities are rather "iffy" (close to some average
value) or rather categorical (close to zero or one): it does not depend on observations. An
ensemble can have perfect resolution by only producing probabilities equal to zero or one,
and be useless if these values are unrelated to what happens in reality. The CRPS and
Brier scores (explained below) can be decomposed as the sum of a reliability term and a
resolution term.
It  can  be  shown  that  an  ensemble  that  has  perfect  resolution  AND perfect  reliability
produces  perfect  forecasts,  by  issuing  probabilities  equal  to  1  if  and  only  if  the
corresponding event occurs. It means that there is no forecast uncertainty, in which case it
is useless to compute an ensemble since any member is a perfect deterministic forecast.
Real-world  prediction systems have imperfect  forecasts so they cannot  simultaneously
have  perfect  resolution  and  reliability.  The  difficulty  is  understanding  the  difference
between "perfect forecast" and "perfect ensemble":

• a  "perfect  forecast"  makes  predictions  that  are  equal  to  observations  (within
observation error). It is deterministic, since by definition it has is no uncertainty.

• a  "perfect  ensemble"  is  an  ensemble  that  correctly  represents  the  forecast
uncertainty of a given prediction system. It the latter is imperfect, then the ensemble
cannot have perfect resolution and reliability.

Confusion between the concepts of "good prediction system" and "good ensemble" is a
frequent cause for misunderstanding. A correct way of dealing with it is to only use scores
to compare between pairs of prediction systems, or to directly look at the user value.
Ensemble calibration may or may not improve ensemble resolution and/or user value.

Step four: validating the ensemble user value 

User value is the correctness of the decision a user can make using information from an
ensemble. It depends on the ensemble and on the kind of information that is beneficial (or
harmful)  to  the  user,  i.e.  the  user  impact.  Different  users  may  experience  different
ensemble values.
Literally hundred of other ensemble scores have been proposed over the years, each
author usually claiming their score is better than the others. Of course, it is a matter of
point of view, since there are infininte degrees of freedom in an ensemble forecast. For
instance  some authors  have  advocated  for  scores  to  be  "proper",  "fair",  "symmetric",
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related  to  "entropy",  etc,  concepts  which  have  little  or  no  meaning  in  practice.  What
matters in the end is what value the users are able to extract from ensembles, which
requires designing ensemble scores with the user's interests in mind. A nice consequence
is  that  the  variety  of  scores  to  consider  inevitably  boils  down  to  the  variety  of  user
sensitivities that are worth considering. We will explain only four such scores, and let it to
the reader to invent their own scores if they need to target other uses.
Note that all scores presented here are scalar (i.e. they score 0-D, real variables). They
are not ideal for validating higher-dimensional aspects of the ensemble predictions, such
as  relationships  between  parameters,  field  structures  (which  requires  "object-oriented"
tools) and forecast scenarios.
The CRPS score (continuous ranked probability score) is sensitive to the overall shape of
the uncertainty distributions. Although its simplicity may seem attractive (a single score
acts on the whole distribution), it is at the same time a problem, because it makes the
CRPS sensitive to all parameter thresholds, whereas the user may only be interested in
some of them. The CRPS also tends to be oversensitive to large-scale aspects of the
reliability (e.g. the ensemble bias and standard deviation) at the expense of other aspects
of the distributions that may be important, like the probabilities of extremes. The CRPS can
be  decomposed  into  the  sum  of  a  score  that  only  measures  the  reliability  and  the
resolution of the forecast.  
  [Figure: CRPS conceptual diagram]

The Brier score is a simplification of the CRPS that only looks at distributions in terms of
the exceedance of a probability threshold (indeed, one can show that the CRPS is an
integral of the Brier over a range of thresholds). Its advantage (and drawback) is that it is
insensitive to any other aspect of the forecast errors.
CRPS and Brier can be used as measures of user value if one understands what they
mean. They are mostly useful for comparing pairs of ensembles, since the concept of a
"perfect forecast", as explained in the previous section, is ambiguous.

The  ROC (relative  operating characteristic)  diagram and ROCA (ROC area under  the
curve) scores take a dual approach from CRPS and Brier: instead of measuring "what is
the distribution's worth if one takes a given point of view", they measure "what is the value
of  decisions  made  by  using  the  distribution  in  many  different  ways".  The  ROCA is
computed from a function called "the ROC diagram", which is a parametric curve:

• set  a  fixed  probability  threshold  a.  The  ROC  will  score  probabilities  P(x>y)  of
exceeding y. y has the physical unit of predicted parameter x.

• let a parameter t (called decision threshold) vary between 0 and 1

• for all verification points ({xi},xo),

◦ compute  the  forecast  probability  >t  (typically,  by  counting  the  number  of
ensemble members that have value >y)

◦ if P(xi>y)>t, we say that event x>a is "forecasted yes"; if the observation value
xo>y we say the we event is "observed yes"; (and 'no' in the other cases). Then
we put this verification point into one of 4 categories:

◦ category 'a' = 'correct yes forecast' if 'forecasted & observed yes'

◦ category 'b' = 'false alarm' if 'forecasted yes and observed no'

◦ category 'c' = 'non-detection' if 'forecasted no and observed yes'
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◦ category 'd' = 'correct no forecast' if 'forecasdted no and observed no'

• we set (a,b,c,d) to the number of verification points that fall in each category.

• ratio POD(t)=a/(a+c) is called "probability of detection"

• ratio FAR(f)=b(b+d) is called "false alarm rate" (note: some authors have a different
definition for FAR. Here, the denominators do not depend on the forecasts)

The curve made of points ( FAR(t) , POD(t) ) is called the ROC diagram. The higher the
curve, the better the user value. The ROCA is the integral of the ROC i.e. the area under
the curve. 

[Figure: ROC diagram and its unfolding]

It can be shown that
• the  ROCA is  always  convex,  starts  at  (0,0)  and  ends  at  (1,1),  otherwise  the

prediction system can be improved by making trivial changes to its output

• a ROCA=1/2 i.e. a ROC curve on the diagonal can be obtained by making random
i.e. worthless predictions

• if  the  ROCA reaches  point  (0,1)  (the  top  left  corner),  this  point  is  a  perfect
forecasting system

• the Brier score is an integral of the ROCA

• the ROC and ROCA are not changed by ensemble calibration.

The economic value score
The "potential economic value" diagram, often nicknamed "economic value", is a transform
of the ROC curve that makes it easier to relate to the user aversion for false alarms and
non-detections. Be aware that the economic value diagram only shows the potential value
of a perfectly calibrated ensemble. If the ensemble is not reliable, he/she will not be see
this value, but a lower one.
<to be written>

[Figure: economic value diagram & probability ]
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